Regions 8 and 10 Conference | Fargo

Zone Pressure Diagnostics

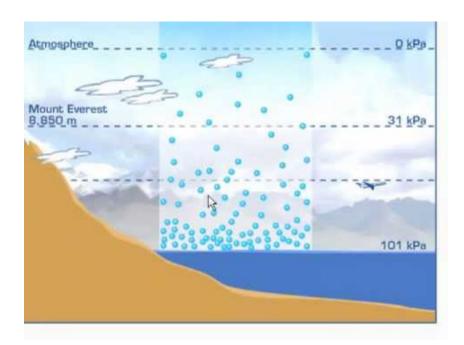
Paul Morin

Agenda

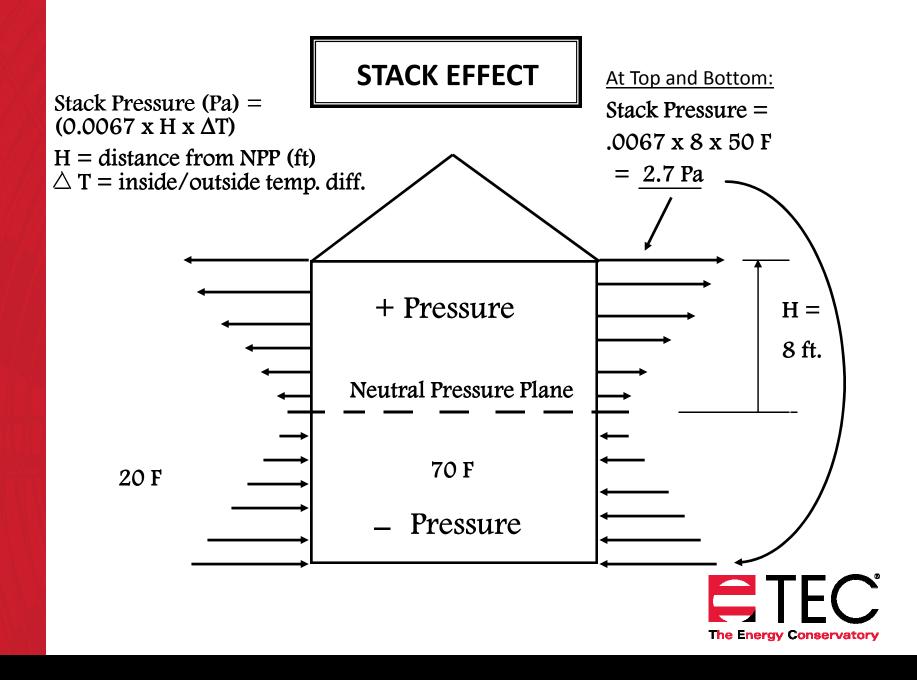
- » Understanding pressures
- » Intro to Zone Pressure Diagnostics
- » Why aligning boundaries is important
- » When to take direct zone measurements
- » When to use advanced ZPD
- » How to take the best measurements

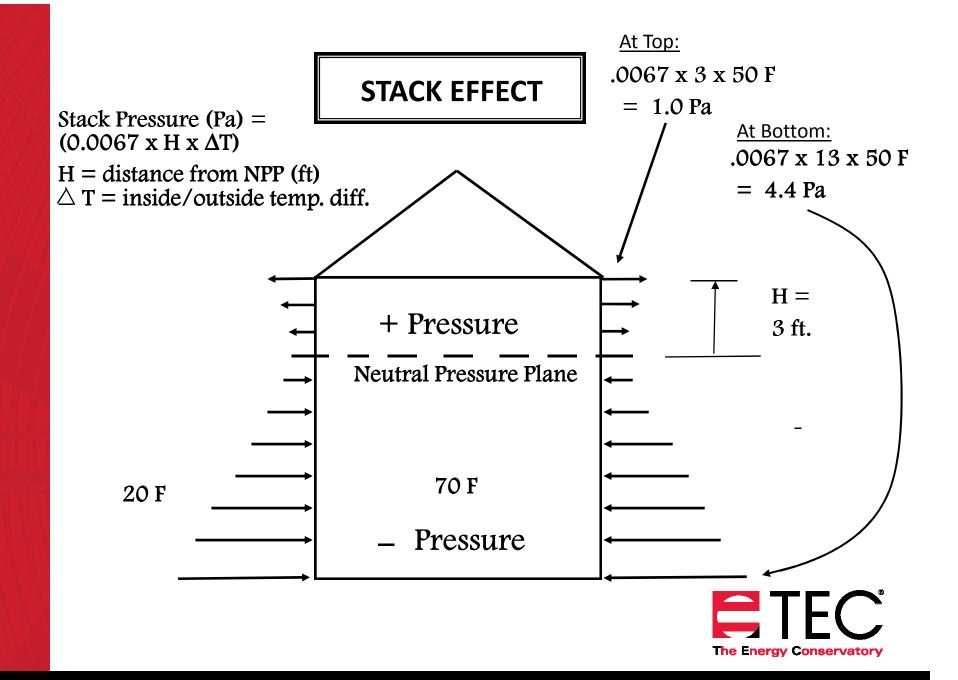
Intro

- » How many use Blower Doors regularly
- Using Infrared with Blower Door
- » Doing Blower Door guided air sealing
- » Zonal Pressures
 - Taking measurements
 - Using measurements to guide your work
- » Pressure Pan Testing


Intro

- » What are you testing?
 - Attics, Garages, Crawlspace, Wall / Floor Cavities...
- » How are you testing?
 - Direct Pressure
 - Charts
 - Calculators



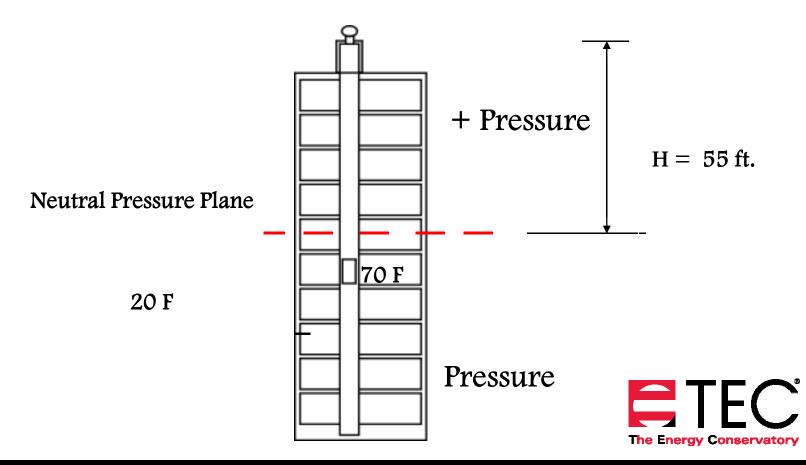

Understanding Stack Affect

- atmosphere = 101,000 Pascals
- » Or about 3 Pascals per foot of elevation
- Cold air is denser than warm air

STACK EFFECT

Stack Pressure (Pa) = $(0.0067 \times H \times \Delta T)$

H = distance from NPP (ft)

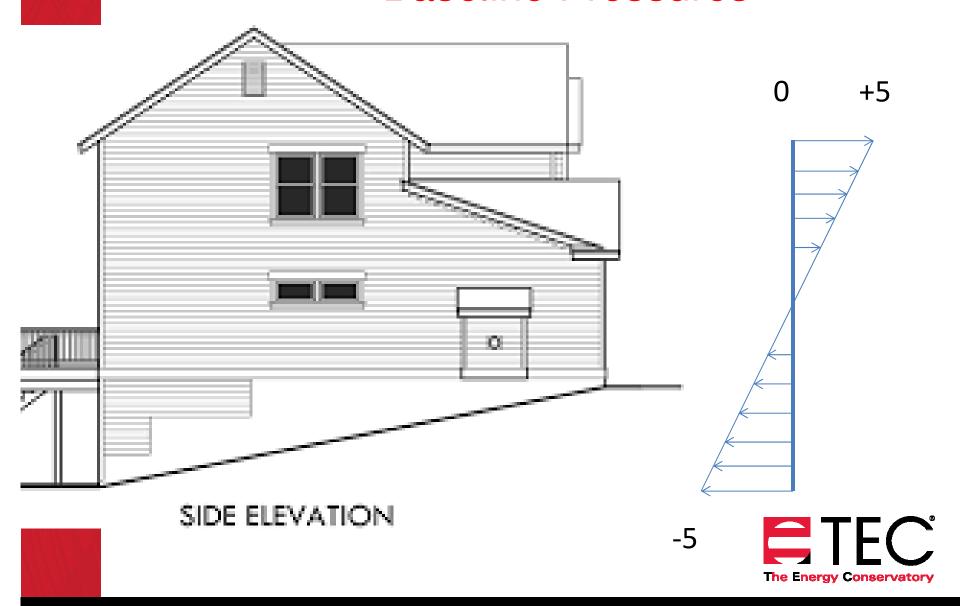

 \triangle T = inside/outside temp. diff.

At Top and Bottom:

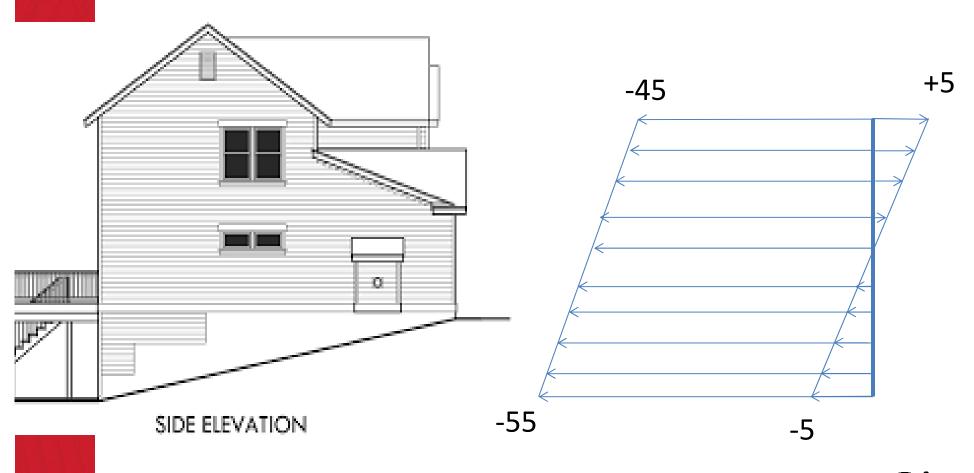
Stack Pressure =

.0067 x 55 x 50 F

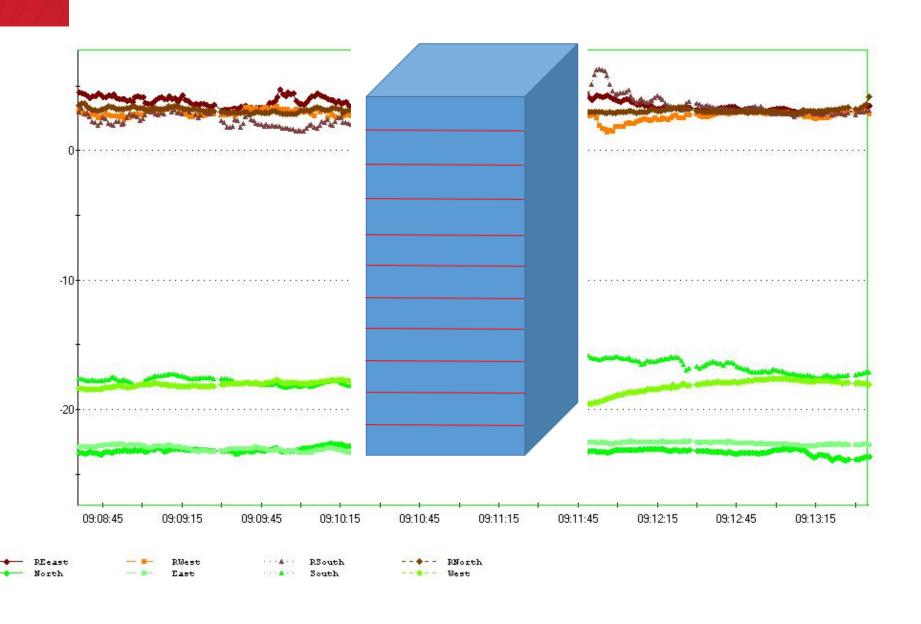
= 18 Pa

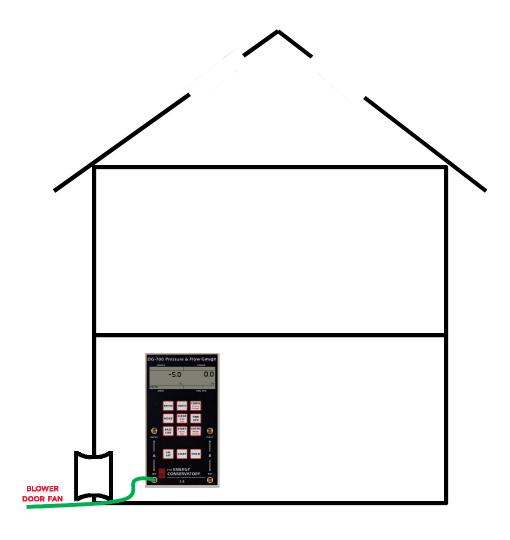


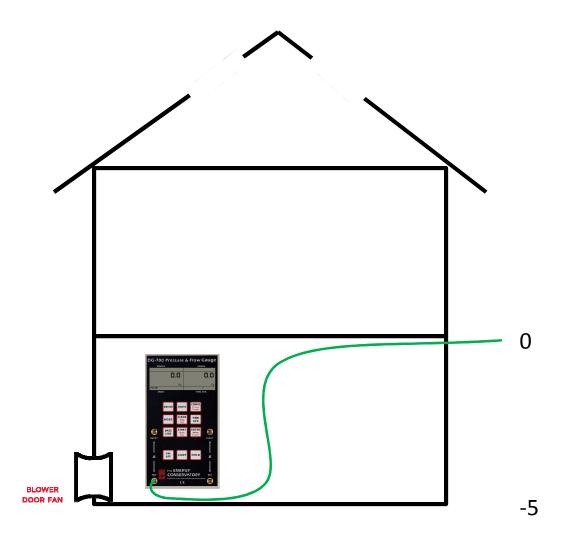
Pascal's Principle

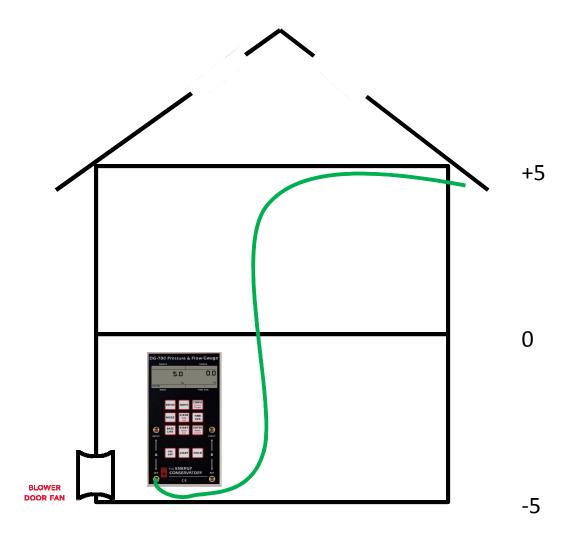

When flow is added or removed from a single zone building, the pressure in the building changes by exactly the same amount everywhere.

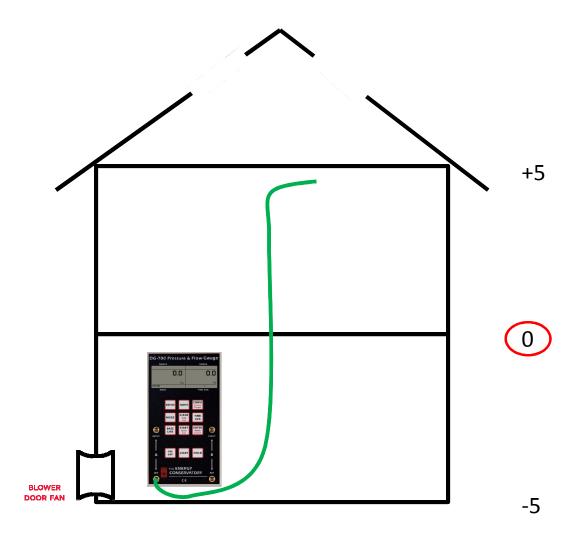
Baseline Pressures

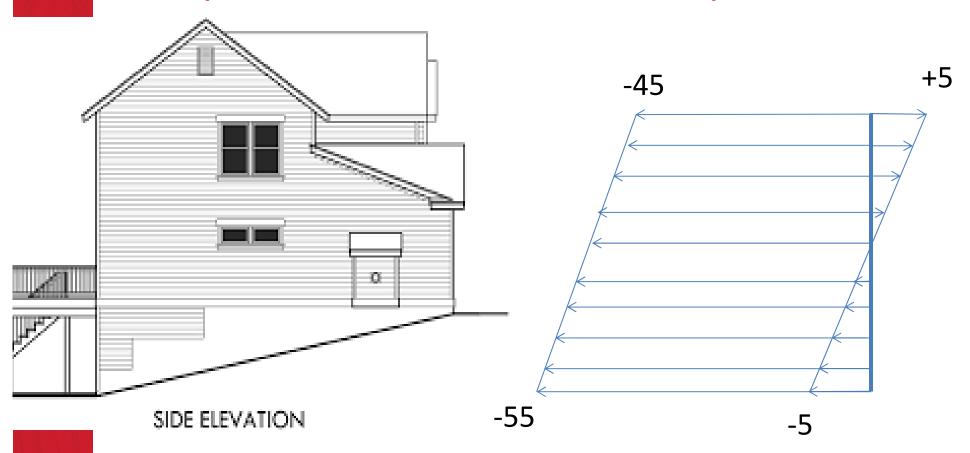



-50 Pa Induced Pressure


Understanding Pressures




-5



Pressure diagnostics - Important to measure baseline pressures

Wind Effect

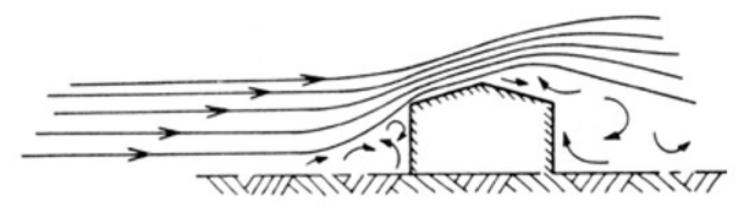


Figure 20 Flow lines around a simple building shape

CMHC Research - Canadian Building Digests

Stack Effect + Wind Effect = Baseline

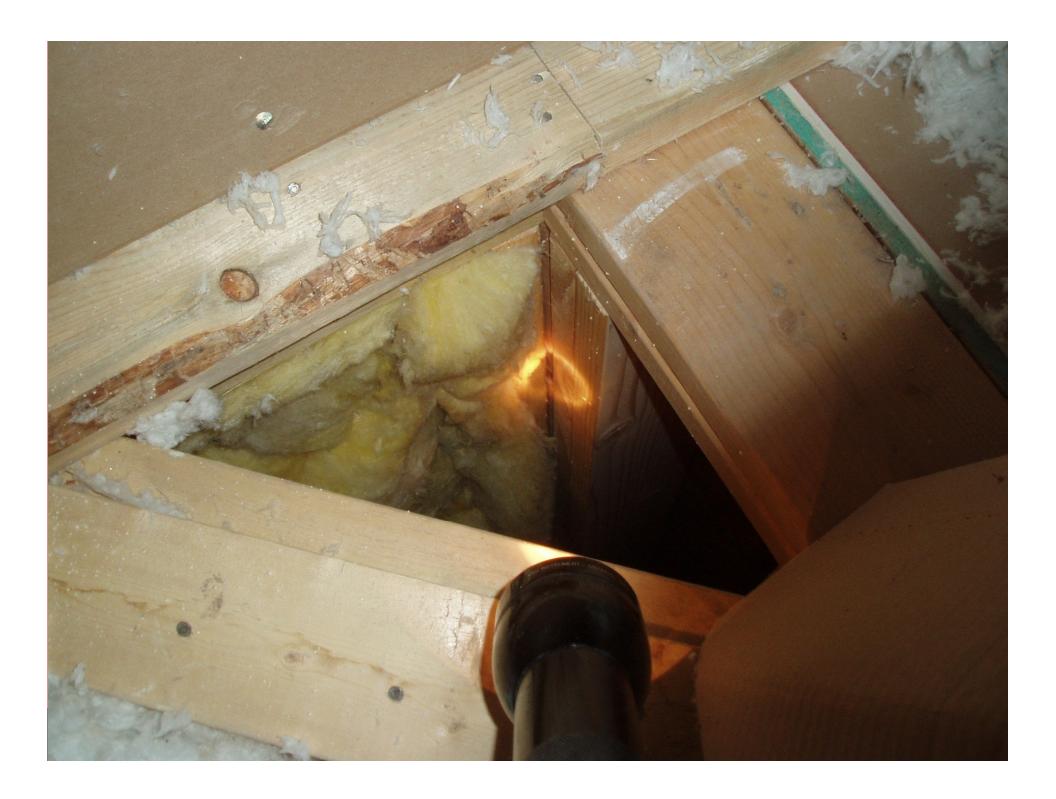
- Put outside reference tube on leeward side of the house
- Use time averaging
- On windy days use software
- Important to baseline:
 - Blower door test
 - Zonal pressure numbers

ZPD Basics

- » What do we need to know:
- Where is the air barrier (Pressure Boundary) so we can determine where to air seal
- » Do the Pressure Boundary and insulation (Thermal Boundary) line up
- Àre zones with poor air quality, such as garages or crawlspaces connected to the indoors
- » Is warm moist air getting into cold attics
- How much can I reduce my blower door number by sealing the attic

The Energy Conservatory

Intro to ZPD

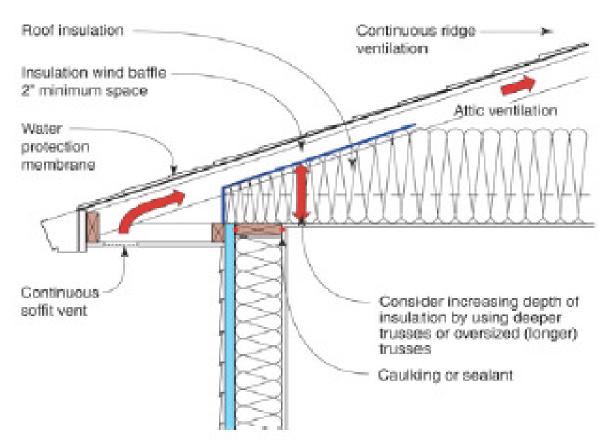


Pressure / Thermal Boundary

- » Visible signs of boundary issues
 - Ice dams
 - Uneven snow melt
 - Attic moisture issues
- » IR with Blower door
 - Attic temperature
- Two options when aligning boundaries
 - Seal attic bypasses
 - Add attic venting

Adding Attic Venting

- Goal is to keep attic temp and RH same as outside
- » Ice dam prevention can be different from energy saving goal
- » Intake = exhaust
- Soffit vents + bypasses = roof vents
- » No soffit vents = warm attic in winter
- Sable vents can be effective for a low attic

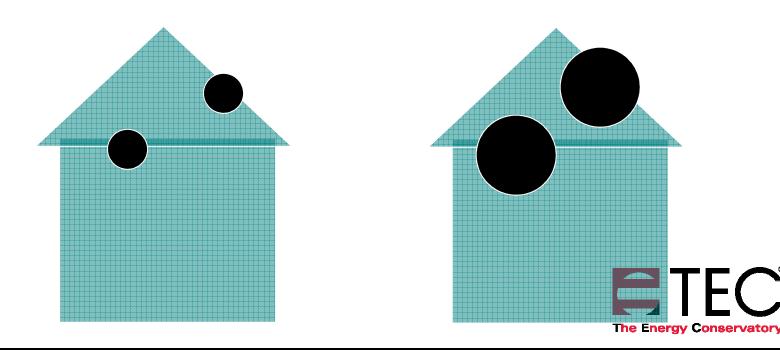


Adding Attic Venting

- Adding venting alone:
 - « Will make direct ZPD numbers look better
 - « Increases CFM50
 - « Can increase attic condensation and frost
- « ZPD can help you determine how much effective attic venting you have

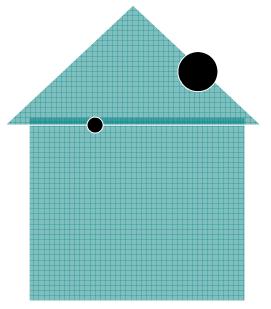
Attic Venting

Zone Pressures Relative Size of Leaks


Zone-House	Zone-Out	Zone-House	Zone-Out
12	38	2	1
25	25	1	1
37	13	1/2	1
41	9	1/3	1
45	5	1/4	1
48	2	1/8	1
49	1	1/13	1

Sources: Michael Blasnik and Jim Fitzgerald

Attic Zonal Reading of 25pa


Means hole between Attic and House is Same size as Hole Between Attic and Outdoors

Attic Zonal Reading of 48pa

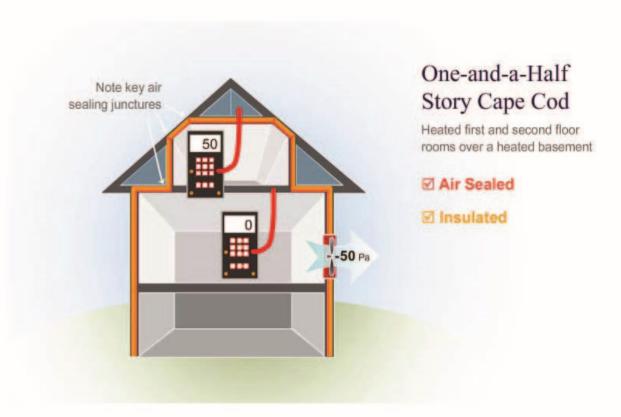
Means hole between Attic and House is 1/8th size of Hole Between Attic and

Outdoors

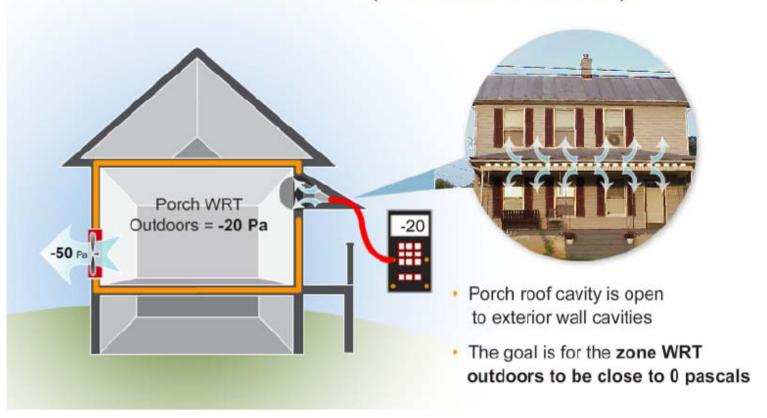
Attic Reading of 25 Pa

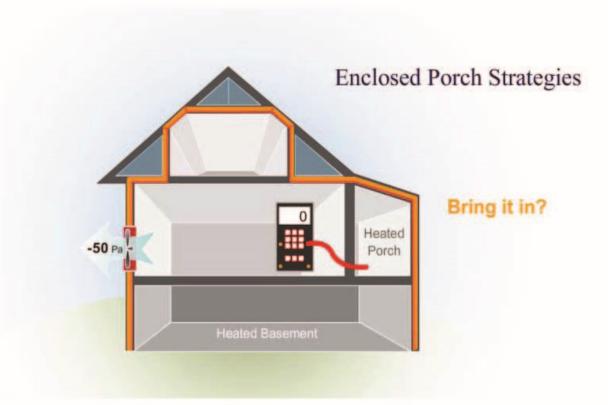
Attic Reading of 48pa

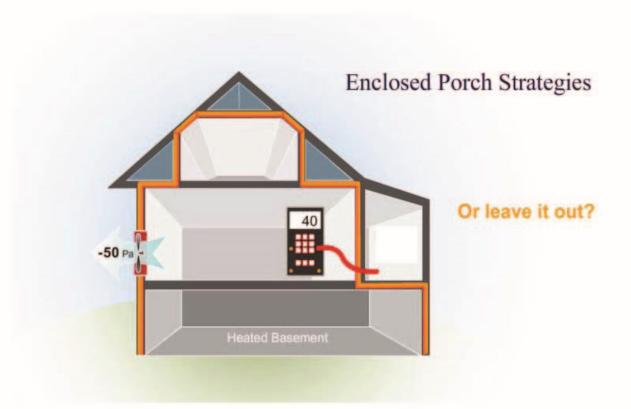
- Measure pressure change caused by blower door
- » Examples:
 - Joist cavities in 1 ½ story house
 - Kitchen soffit
 - Attached porch roof


- » Misuses of Direct ZPD Measurements
 - Assume that a high house to attic number means air sealing is done
 - Set a house to attic target of 45 Pa or higher

Direct ZPD Measurement Objectives


- Is a zone more connected to inside or outside
- » Does Pressure Boundary and Thermal Boundary line up





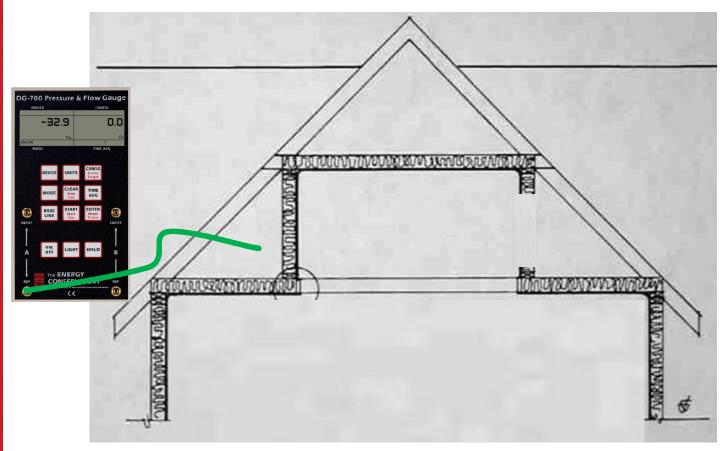
Zone Connections (Manometer Outdoors)

ZPD Objectives

Advanced ZPD Measurement

- » Determine leakage from building to outside
- Help access IAQ issues, such as CO from attached garage and bad air from crawl spaces
- Determine effectiveness of air sealing, pre and post

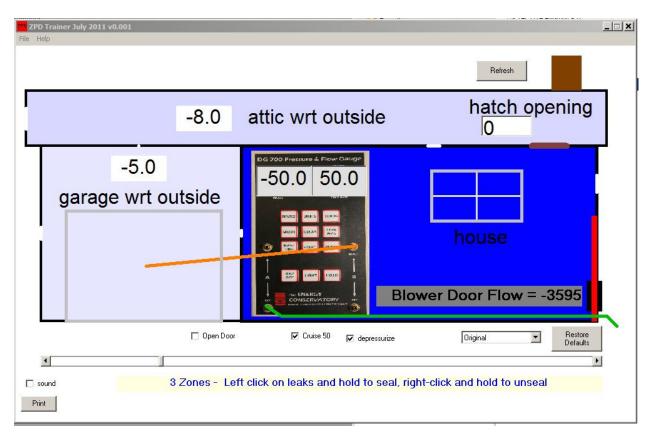
The Energy Conservatory


Makes air sealing targets possible

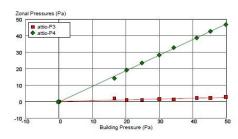
What is Advanced ZPD

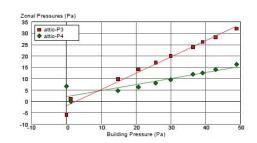
- Using software or charts to calculate cfm leakage between the house and a zone
- » Requires adding a hole or opening a door house to zone or zone to outside
- The expected value must be greater than the cost of performing the test.

Interconnected Zones


Calculating the Results

- >> ZPD Trainer with Cox / Olson charts
- TECTITE and ZPD calculation utility software
- » RED ZPD Calc Tool


ZPD Trainer Demo


TECTITE to Gather the Data

Date of Test: 5/8/2017 Test File: 5-8-17 after hatch

Zone Name	Reference	Building to Zone @50Pa (Pa)	Zone to Outside @50Pa (Pa)	zone Pressure (Pa)	Pressure Ratio	+/- Pressure Ratio
attic-P3 attic-P4	out	47.52 47.40	2.48 2.60	0.47 0.51	0.050 0.052	0.009 0.010
Nominal Building Pressure (Pa)	attic-P3 Pressure (Pa)	attic-P4 Pressure (Pa)				
0.11	0.21	-0.11				
49.90	2.90	46.85				
45.26	2.38	42.75				
41.20	2.37	38.80				
34.34 30.00	1.46 1.72	32.88 28.33				
24.87						
	1.25	23.56				
20.26 16.65	0.99 2.26	19.26 14.29				
-0.21	-0.12	-0.06				

Date of Test: 5/8/2017 Test File: Untitled

Zone Name	Reference	Building to Zone @50Pa (Pa)	Zone to Outside @50Pa (Pa)	Zone Pressure (Pa)	Pressure Ratio	+/- Pressure Ratio
attic-P3 attic-P4	out	14.20 13.26	35.80 36.74	1.78 2.00	0.716 0.735	0.036 0.040
Nominal Building Pressure (Pa)	attic-P3 Pressure (Pa)	attic-P4 Pressure (Pa)			5.755	
0.04 48.92 42.90 39.15 36.37 29.99 25.68 20.72 14.83 1.27	-5.89 32.08 28.33 26.22 23.96 20.01 17.23 14.16 9.86 1.18	6.74 16.36 14.06 12.56 11.98 9.61 8.15 6.40 4.79 0.07				

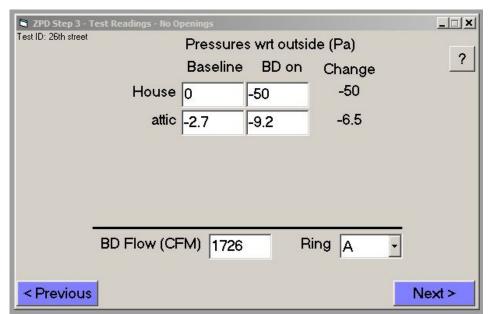
Zone Data Report Page 2 of 2

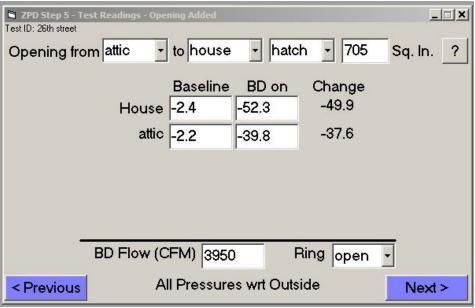
Date of Test: 5/8/2017 Test File: 5-8-17 after hatch

Zone Data Report Page 2 of 2

Date of Test: 5/8/2017 Test File: Untitled

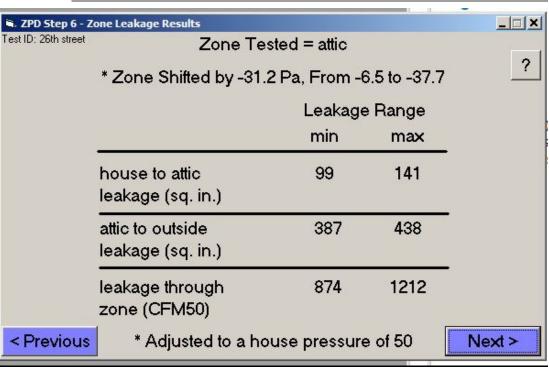
ZPD Input Table

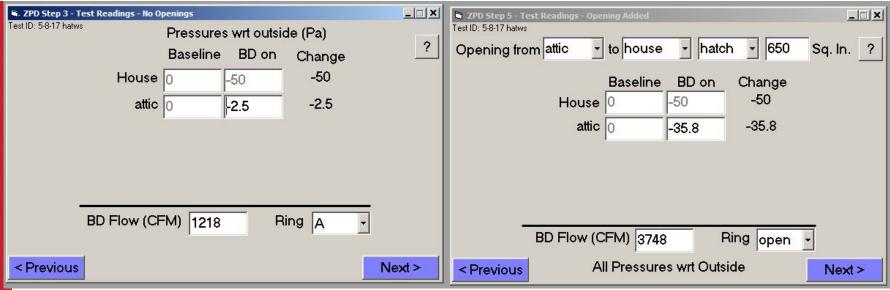

Building Baseline Standard Deviation: 0.12 Pa

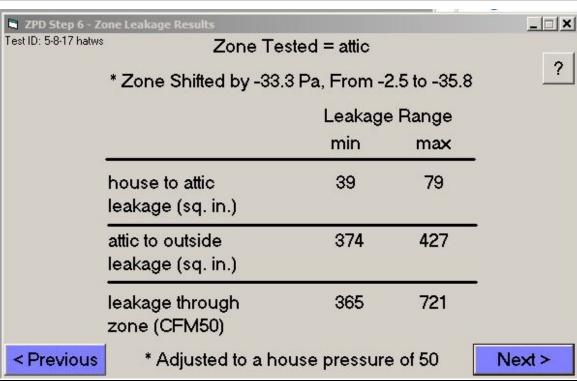

Zone Name	Zone to Outside Pressure @50 Pa
	-2.48
	-2.60
Blower Door Flow:	1218 CFM
Largest Ring Used:	Ring A

ZPD Input Table

Building Baseline Standard Deviation: 0.18 Pa


Zone Name	Zone to Outside Pressure @50 Pa
	-35.80
	-36.74
Blower Door Flow:	3748 CFM
argest Ring Used:	Open




ZPDCU without TECTITE

1043 CFM50 +/- 169

ZPDCU with TECTITE

Web Based Software

Zone tested attic Blower door test ty	oe Depressurizati	on ▼			
	□ Use Adva	nced 1	Inputs		
1	nitial Zone (Config	uratio	n	
Pressures [Pa]	BD off	В	D on	ΔΡ	
House wrt outdoor	0	-50		-50	
House wrt zone ▼	-2.7	-46.2		-43.5	
Blower door flow ad	justed to 50 Pa	e [CFM	v] 1	726	
Zone leakage ratio	(zone-to-house	e : zone	-to-out	door) =	1:3.4
Mole/door located b Type of modification		nd Hou	se ▼	on	
Hole/door located b	etween zone a	nd Hou	se ▼	Dη	
Hole/door located b	Add a hole or op	nd Hou	se 🔻		
Hole/door located b Type of modification Pressures [Pa]	Add a hole or op	nd Housen a door	se 🔻	ΔΡ	
Hole/door located b Type of modification Pressures [Pa] House wrt outdoor	BD off -2.4 -2.2	B -52.3	se v	ΔP -49.9 -12.4	
Hole/door located b Type of modification Pressures [Pa] House wrt outdoor House wrt zone Blower door flow ad	BD off -2.4 -2.2	B -52.3 -14.6	D on	ΔP -49.9 -12.4	
Hole/door located b Type of modification Pressures [Pa] House wrt outdoor House wrt zone Blower door flow ad Result	BD off -2.4 -2.2 justed to 50 Pa	B -52.3 -14.6 CFM	D on Configu	ΔP -49.9 -12.4	a t
Hole/door located b Type of modification Pressures [Pa] House wrt outdoor House wrt zone Blower door flow ad Result	BD off -2.4 -2.2 justed to 50 Pa s for Initial 2 eakage @ 50F	B -52.3 -14.6 CFM	D on Configu	ΔP -49.9 -12.4 950 Iration age are	a 48
Hole/door located b Type of modification Pressures [Pa] House wrt outdoor House wrt zone Blower door flow ad Result Zone-to-	BD off -2.4 -2.2 justed to 50 Pa s for Initial 2 eakage @ 50F [CFM v]	B -52.3 -14.6 CFM	D on Configu	ΔP -49.9 -12.4 950 uration age are	1

1000 CFM50 +/- 460

Cox and Olson Charts

-	- 19		40	40	20	20		2000	0.010.00	100		7.77	10000	70.50	0.00	1922	17:00	to Zo	0.000			-	0		ie i	
ΙZ		44	42	40	200000	36	34	32		28	26	24	22		18	16	14	12	10		6	4	2	0	Uncertainty	
	Z/O	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	Š	Before Hole
0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10%	San a san
9	1		0.35	0.29	0.25	0.22	0.20	0.18	0.17	0.15	0.15	0.14	0.13	0.12	0.12	0.11	0.11	0.10	0.10	0.10	0.09	0.09	0.09	0.09	15%	CFM50
18 17	2	8	0.68	0.54	0.45	0.39	0.35	0.32	0.29	0.27	0.25	0.23	0.22	0.21	0.20	0.19	0.18	0.17	0.17	0.16	0.15	0.15	0.15	0.14	20%	1726
6	4	W.		1.23	0.68	0.80	0.51	0.45	0.41	0.49	0.35	0.42	0.31	0.29	_	0.26	0.25	0.30	0.23	0.22	0.21	0.26	0.20	0.19	>26%	
5	5	5	-	1.23	1,30	1,05	0.89	0.77	0.68	0.62	0.56	0.52	0.48	0.45	_	0.40	0.38	0.37	0.35		0.32	0.31	0.30	0.29	720.70	H/Z
14	6	9			1.76	1.36	1.12	0.96	0.84	0.75	0.68	0.63	0.58	0.54	0.51	0.48	0.45	0.43	0.41		0.38	0.36	0.35	0.34		1
3	7				- 2	1.76	1.41	1.18	1.02	0.90	0.81	0.74	0.68	0.63	0.59	0.56	0.53	0.50	0.48	0.45	0.43	0.42	0.40	0.39		44
2	8			- 3		2.28	1.76	1.44	1,23	1.08	0.96	0.87	0.80	0.73	0.68	0.64	0.60	0.57	0.54	0.52	0.49	0.47	0.45	0.44		
11	9						2.20	1.76	1.47	1.27	1.12	1.01	0.92	0.84		0.73	0.68	0.65	0.61	0.58	0.55	0.53	0.51	0.49		
0	10	0				0	2.80	2.15	1.76	1,49	1.30	1.16	1.05	0.96		0.82	0.77	0.72	0.68		0.62	0.59	0.56	0.54		A6411-1-
9	11	W.				W 1	. 3	2.65	2.11	1.76	1.76	1.33	1.20	1.09	Maria Maria Maria	92.92	0.86	0.81	0.76	0.72	0.68	0.65	0.62	0.60		After Hole
8	12 13							3.32	3.09	2.07	2.04	1.53	1.36	1.23	1.12	1.03	1.07	0.90	0.84	0.80	0.75	0.72	0.68	0.65		CFM50
6	14			- 1					3.83	2.45	2.38	2.02	1.76	1.56	1.41	1.15	1.18	1.09	1.02	0.87	0.90	0.79	0.75	0.71		
5	15									3.54	2.80	2.33	2.00	1.76	1.57	1.42	1.30	1.21	1.12	1.05	0.99	0.93	0.89	0.84		3950
4	16									4.35	3.32	2.70	2.28	1.98	The second	1.58	1.44	1.33		1.15	1.08	1.01	0.96	0.91		
3	17										3.98	3.14	2.61	2.24	1.97	1.76	1.59	1,46	1.34	1.25	1.17	1.10	1.04	0.98		H/Z
2	18					4				li li	4.86	3.70	3.01	2.54		1.95	1.76	1.60	1.47	_	1.27	1.19	1.12	1.06		12
1 0	19	N.				W .			- 8			4.42	3.49	2.89	2.48	2.18	1.94	1.76	1.61	1.48	1.38	1.29	1.21	1.14		16
	20								_			5.38	4.09	3.32	2.80	2.43	2.15	1.93	1.76	1.61	1.49	1.39	1.30	1.23		
9	21												4.86 5.89	3.83		3.06	2.38	2.13	1.92		1.62	1.50	1.41	1.32		
7	23	A 445-	Exar	nnle	(House	o in '	Minto	r Mor	io)				2.09	.30	1000000000	3.46	2.65	2.59	2.31		1.76	1.63	1.63	1.42		ANSWER
6	24		Acce							to Bl	ower	Door		.41	4.86	3.94	3.32	2.87	2.54	2.28	2.07	1.90	1.76	1.64		MICHEL
	25	Mea	sure l	House	e CFN	1 50	(exar	mple:	2400	CFM	150)				5.75	4.52	3.74	3.20	2.80	2.49	2.25	2.06	1.89	1.76		CFM50 Diff
1	26		sure l						erify	with	Attic	to Ou	itside)	6.92	5.25	4.25	3.57	3.09	2.73	2,45	2.23	2.04	1.89		2224
3	27	(exa	mple:	36 P	A Ho	use to	Atti	C)								6.19	4.86	4.02	3,44		2.68	2.42	2.20	2.03		2224
2	28	Mak	е Оре	ning	From	Hou	se to	Attic							I	7.43	5.64	4.55	3.83		2.93	2.63	2.38	2.18		88 141 11
0	29	(eno	ugh f	or at	least	6 PA	Char	nge)	8000		102311				1		6.63	5.21	100000000000000000000000000000000000000	3.67	3.21	2.86	2.58	2.35		Multiplier
)	30 31		sure l									to C.	toid-	, <u> </u>	i		7.95	6.02 7.07	4.86 5.55	4.09	3.54	3.12	2.80	2.54		0.45
3	32		sure l						erity	with	Attic	to Oi	itside	:)	!		10	8,46	6.41	5.17	4.35	3.76	3.32	2.74		
7	33	(CAG	inpic.	2017	1100	100 10	Attic	-1								1	- 63	0.46	7.51	5.89	4,86	4.15	3.63	3.23		Maximum
6	34														i			1.	8.98	6.79	5.48	4.61	3.98	3.51		Reduction
5	35		- NACO-		10000	1000	.0226			101 700	CONT.	of laws	-1100 A							7.95	6.24	5.14	4.39	3.83		
4	36														0) = (9.49	7.18	5.79	4.86	4.20		1009
3	37	Lool	k in R	ow w	ith 36	H/Z	and n	nove	over	to Co	lumn	with	20 H	Z to	Find I	Multip	olier =	-1.56			8.39	6.58	5.42	4.63		62
2	38	Take	600	X 1.5	6 = 93	6														- 0	10.00	7.56	6.10	5.12		
1	39						RED	UCTI	ON A	VAIL	ABLE	by s	ealin	g all	holes	to At	tic)				14	8.83	6.92	5.71		Square In
0	40											-	78				- 5					10.52	7.95	6.41		100.9
9	41 42	To D	etem	nine l	Jncer	tainty	Ran	ge m	ultiply	y Ans	werl	by pe	rcen	tage	in Un 0= 94	certa	inty T	able					9.27	7.26		
8 7	42	10 L	etem	inne /	appro	Alma	re no	ne 512	e DIV	ide A	uiswe	er by	10 (9.	00 / 1	U= 94	sq ir	')						11.03	9.71		ext exponent = 0.6
																				100				9.11		

1009 CFM50 =/- 152

20	Low Range	High Range
10.00%	908	1110
15.00%	857	1160
20.00%	807	1210
25.00%	757	1261

Regions 8 and 10 Conference | Fargo

Questions?

Thank you
Paul Morin
pmorin@energyconservatory.com
612-254-2162

